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Abstract

Heteropoly acid HPW;,0,40 (PW) supported on silica (PW/SiPhas been used as an effective catalytic system for a four-component coupling
process for the synthesis pfacetamido ketones by Dakin—\West reaction. The present methodology offers several advantages, such as high yiel
short reaction times, mild condition and a recyclable catalyst with a very easy work up.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction supports, but Sig) which is relatively inert towards HPAs, is
the one most often us4d].

Heteropoly acids (HPAs) have been extensively studied as The design of multi-componentreactions (MCR) is animpor-
acid catalysts for many reactions and found industrial applicatant field of research from the point of view of combinatorial
tions in several processgq. HPAs are promising solid acids to chemistry[4—7]. In the past decade, there has been tremendous
replace environmentally harmful liquid acid catalysts, such aslevelopment in three- and four-component reactions involving
H2SOy [1a,1b] The Keggin-type HPAs typically represented by Passerini{8], Ugi- [9], and Mannich-type reactiorj40] as a
the formula H_g[XM 12040], where X is the heteroatom (e.g. result of which, these processes are performed without isolation
P5* or Si*), x the oxidation state, and M is the addenda atomof any intermediates, thus reducing time and saving both energy
(usually M&* or W), are the most important catalysts, espe-and raw materials. Dakin-West reaction is the best known
cially H3PW12040 (PW), HsPM012040 (PMO0) or H4SiW12049  route for the synthesis @-acetamido ketoneld1,12] These
(SiW) [2]. Being stronger acids, HPAs generally exhibit highercompounds are versatile intermediates, in that their skele-
catalytic activities than conventional catalysts, such as minerdabns exist in a number of biologically or pharmacologically
acids, ion-exchange resins, zeolites, 8&D,03, H3POy/SiO important compound$§13,14] A few catalysts have already
[1a,1b] etc., in both heterogeneous and homogeneous systerhsen applied to synthesis @facetamido ketones, using this
[1a]. Furthermore, HPA catalysis lacks side reactions, such amethod, including CoGI[15], montmorillonite K-10 clay16],
sulfonation, chlorination, etc., that frequently occur with min- HoSO4/SiO; [17], triflate saltg18]. However, these procedures
eral acids. are not entirely satisfactory and suffer from long reaction time

Supported HPA catalysts are important for applications duer tedious work up. Hence, the development of new catalysts
to environmental and economic considerations. They also hawsith more efficiency is of interest.
excellent activity and can be easily recovered from reaction mix-
tures and reused. Acidic or neutral substances, such as SiQ®. Experimental

active carbon, acidic ion-exchange resin, etc., are all suitable
2.1. Techniques

* Corresponding author. Tel.: +98 831 4274559; fax: +98 831 4274559, Surface area and porosity of HPA catalysts were mea-
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2000 instrument. Thermogravimetric analyses (TGA) were perTable 2
formed using Perkin-Elmer TGA 7 instrument under nitrogenEﬂeC‘ of catalysts on the four-component Dakin—West reaction to give
flow. IR spectra were recorded with KBr pellets using a Shj-P-acetamido ketones NHAC O

(6]
madzu 470 spectrophotometer and FT-IR spectra were pe C“OH i Catalyst
formed using Bomem MB 104 spectrophotometer. Tungstel + HE CH,CN, CH,COCI O O

content in the catalysts was measured by inductively coupleu

plasma (ICP atomic emission spectroscopy) on a Spectro CirGsitry  Catalyst Temperature T (h)  Yield
CCd spectrometer. The products of the catalysis reaction were (°C) (%2
detected by a Bruker Avance 200 MHz NMR spectrometer. 4 _ 80 10 0
2 PW (5 mol%) RT 085 95
2.2. Materials and catalysts 3 PMo (5 mol%) RT 0.85 88
4 SiW (5 mol%) RT 085 90
. . Zn(OTf), (10 mol%)8 RT 30 60
All chemical reagents and solvents were analytical grade ancg B?(E)Tf;); ((10 ,T;%f){ls RT 30 69
used without further purification. 3#PW;2040, H3PM012040 7 Sn (OTf} (10 mol%s)L8 RT 30 68
and H;SiW,,040 hydrate from Aldrich, Merck and Aerosil 300 8 Sc(OTfg (10 mol%)8 RT 30 82
silica from Degussa were used. Silica-supported PW catalyst$ Cu(OTfp (10 mo'i/")lz RT 30 64
(PWI/SIQ) were prepared by impregnating Aerosil 300 silica 12 ;lé%?; 888";'0/;%8 El 28 ;Z
(SseT, 300 n¥/g) with an aqueous solution of PW. The mixture ;, CuCh (100 mol%} RT 30 79
was stirred overnight at room temperature, followed by dryingis BiCl; (100 mol%8 RT 30 77
using a rotary evaporator, as described elsewlit®g The 14 LaCl (100 mol%}8 RT 30 77
acidic salt CssHosPW12040 (CsSPW) was prepared by the ig :—'(C:fa(olgo "]f;';f%’w EI gg ig
: g : : : n mol%
literature method19]. Catalyst characterisation is given in 17 SiOH,S0; (0307 80 108 o1
Table 1 18 Montmorillonite K-10 (2g)¢ 70 7 80
19 60% PW/SIQ (14 mol%) RT 1 95
2.3. Typical procedure for the synthesis of B-acetamido 20 40% PW/SIQ (9 mol%) RT 1 90
ketones 21 20% PWI/SIQ (5 mol%) RT 1 75
22 CsPW (100 mol%) 80 4 0
) 23 40% PWI/SIQ (9 mol%) 80 1 92
A solution of aryl aldehyde (1 mmol), ketone (1 mmol), 24 40% PW/SI® (20 mol%) RT 1 93
acetyl chloride (0.3 mL) and acetonitrile (3 mL) in the presencezs 40% PW/SiQ (5 mol%) RT 1 80
of appropriate amount of catalytable 9 was stirred at ambi- 26 48:/0 F’ngg 8 mo:z@jjz RT 1 82
: ; 7 40% PW/SIQ (9 mol% RT 1 7
ent temperature. The progress of the reaction was monitored 40% PWISIG (9 mol%) RT 1 o7

TLC. After completion of the reaction, the mixture was filtered

and the filtrate was poured into 50 mL ice-water. The solid * Isolated yield.

product was filtered. washed with ice-water and recrystallized b Catalyst reused in four successive runs; the catalyst was filtered off, washed
' . with acetonitrile and dried at 15@€/0.5 Torr for 1.5 h.

from ethyl acetatetheptane to give the pure product. All

products were identified by comparing their NMR and IR . ) . .
values with those for authentic sample6,17,21] B-acetamido ketones was studied. First the reaction of benzalde-

hyde and acetophenone was examined in the presence of several
HPAs catalystsTable 2 entries 2—4). The synthesis could not
be achieved in the absence of the catalyab(e 2 entry 1). The

Since, Keggin-type heteropoly acids, e.g. PW, PMo and sjyeaction was more efficient in the presence of HPAs when com-

were previously found to be highly active solid acid catalystspa“ad tobthe Iit%rar:ure procedt[ﬂe(sj—lﬁ]('Ir']apltaldzfent;:es 5_1?)' ;
[2,20], the utilization of such HPAs properties in the synthesis of t Was observed that PW returned a high yield for the coupling o
an aldehyde with ketones. Heterogeneous catalysts have gained

importance due to environmental and economic considerations.
This encouraged the investigation of the efficiency of PW{SiO
as a catalyst on such reactions. PW/sudth different weight

3. Results and discussion

Table 1
Catalyst characterisation

Catalyst Seer  Pore  Pore  HO(WL%P  WWL%F  nercent of PW was examine@igble 2entries 19-21). FT-IR of

size  volume the supported Keggin HPA catalysis after catalysis preparation
60% PW/SIQ 87 145 0.34 18 45.6 and also after catalytic reaction were checked and characteristic
40% PWISIQ 117 227 067 4.8 28.9 peaks at about 1081, 985, 890 and 814 éwere observed. It
20% PW/SIQ 208 145 075 35 15.4

should be emphasized that both catalyst preparation and reaction
conditions are mild, thus it is reasonable that the Keggin unit
* Catalysts pre-treated at 150/0.5 Torr for 1.5 h, PW content from prepara- - spoy|d be intact under the reaction condition. Acidic heteropoly

tion stoichiometry in anhydrous catalysts. s . .
b From TGA as a weight loss in the range of 30-3aD salts, such as CsPW showed no reactivity in this reaction

© W content in anhydrous catalysts from ICP. Typically, #ieontent from (Table_ 2 e_ntry 22)_- The tempe_rat_ure and the quf'mtity of catalyst
ICP was slightly lower than expected from the preparation stoichiometry. used in this reaction were optimizetaple 2 entries 23-25).

CsPW 129 38 0.12 1.8 60.5
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Table 3
Silica-supported BPW; 049 catalysed synthesis @Facetamido ketones at room temperature

CHO O PW/SiO, (9 mol%) R
X + X
R CH,CN, CH,COCI, R.T. R

R
NHAc O
Entry Ar/lR Ar/R Product Time (min) Yield (%)
H3COCNH ¢
1 CsHs CegHs 60 90
H,COCNH O
2 4-CIGsH4 CeHs O O 40 95
Cl
H,COCNH O
3 4-CH;OCsH4 CeHs © 90 80
CH,0
H,COCNH O
4 2-ClGsH4 CeHs l l 60 90
Cl
H;COCNH 0o
5 4-CNGsHg CgHs © 90 87
NC
H,COCNH 0
6 3-NO,CgH4 CeHs O,N 70 95
H;COCNH O
7 CsHs 4-NO,CgH O O 90 73
NO,
H;COCNH O
8 CsHs 4-BrCgHg : 60 95
Br
I,COCNH O
9 4-CHsCgHg 4-NO,CgHg4 O O 60 96
s/
CH, NO,
H,COCNH 0
10 4-ClGHa 4-BrCgH4 O O 70 95
Cl Br
H,COCNH O

11 4-ClGsH4 4-NO,CgHa @L 60 90

Cl NO
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Table 3 Continued)
Entry Ar/R Ar/R Product Time (min) Yield (%)
H,COCNH O
12 4-CIGsHa 4-CICsH4 70 94
cl a
H,COCNH O
13 4-CH0CsH4 4-NO,CgHa 90 90
CH,0 NO,
H3COCNH ¢
14 3-NOCeHa 4-NO,CeHa 60 96
NO,
NO,
H,COCNH 0O
15 3-NO,CsHa 4-BrCeHa O O 60 95
Br
NO,
H,COCNH ¢
16 2-HOGH4 CeHs 100 86
N
OH
H,COCNH 0
17 2-HOGH4 4-NO»,CgH4 60 60
on NO,
H,COCNH 0
18 2-HOGH. 4-BrCsHa @ 90 85
N
OH Br
H,COCNH o
19 CH,CH, CeHs 240 10
CH,CIH
H,COCNH 4
20 GoHs CHy ©)\)1\ 240 40
CH,COCNH
21 CoHs CsH100 | 240 40
CH,COCNH ¢
22 GsHs CgH100 60 8y

ks

a |solated yield after purification characterisedyNMR and IR spectroscopi21].
b The reaction performed at reflux condition.
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(dd,/=6.5 and 9.6 Hz, 1H), 3.85 (dd,=6.5 and 9.6 Hz, 1H), 5.70 (m,
1H), 7.24 (s, 1H), 7.54-7.87 (m, 4H), 7.96 (m, 4H); IR (KBr, T
3264, 3035, 1690, 1637, 1585, 1510, 1353, 1285, 1077, 998, 824, 658,
576;

B-acetamidoB-(2-hydroxyphenyl)propiophenoneTdble 3 entry 16):
M 130-132C; 1H NMR (200 MHz, CDG4) § 2.00 (s, 3H), 3.49 (d,
J=7.2Hz, 1H), 3.68 (d/=7.1Hz, 1H), 6.87 (s, 1H), 7.50-7.72 (m,
5H), 7.95 (d,/=5.9Hz, 2H), 8.23 (d/=5.2Hz, 2H); IR (KBr, cnT?)
3286, 2845, 1679, 1638, 1595, 1501, 1446, 1341, 1289, 851, 747, 681,
588;

B-acetamidd3-(2-hydroxyphenyl)-4-nitropropiophenon@able 3 entry
17): 1H NMR (200 MHz, CDGQ) § 2.01 (s, 3H), 3.38 (d/=7.1Hz,
1H), 3.65 (d,/=7.1Hz, 1H), 5.98 (s, 1H), 6.79 (s, 1H), 7.44-7.69
(m, 4H), 7.95-8.25 (m, 5H); IR (KBr, cnt) 3275, 3025, 2843, 1665,
1634, 1595, 1536, 1511, 1341, 1275, 847, 739, 677, 580;
B-acetamidd3-(2-hydroxyphenyl)-4-bromopropiophenone Table 3
entry 18): 1H NMR (200MHz, CDG) § 2.12 (s, 3H), 3.33 (d,
J=7.3Hz, 1H), 3.68 (dJ=7.3Hz, 1H), 5.38 (s, 1H), 6.68 (s,1H),
7.34-7.80 (m, 5H), 8.02-8.26 (m, 4H); IR (KBr, cf) 3250, 3026,
2855, 1658, 1629, 1577, 1515, 1459, 1350, 1278, 860, 745, 679, 593;
B-acetamidopentaniophenon@&able 3 entry 19): 1H NMR (CDd,
200MHz) § 1.11 (t, /=10.1, 3H), 1.55 (m, 2H), 2.00 (s, 3H), 3.21
(dd, /=5.9 and 9.5Hz, 1H), 3.60 (ddj=5.9 and 9.5Hz, 1H), 5.51
(m, 1H), 7.29 (s, 1H), 7.62—7.70 (m, 5H); IR (KBr, cf) 3246, 3030,
2868, 1659, 1631, 1275, 1077, 884, 827;
N-[3-0x0-1-phenylbutyl]acetamide Téble 3 entry 20): 1H NMR
(CDCl3, 200MHz) § 1.18 (s, 3H), 2.04 (s, 3H), 3.11 (dd~=5.8 and
9.0Hz, 1H), 4.13 (dd/=5.8 and 9.0Hz, 1H), 5.16 (m, 1H), 7.12 (s,
1H), 7.32-7.44 (m, 5H); IR (KBr, cmt) 3290, 1710, 1652, 1554,
1370, 1308, 1129, 878, 758, 704;
N-{1-phenyl-1-[2-oxocyclohexyflacetamide Table 3 entry 21 or 22):
1H NMR (CDCk, 200 MHz) § 1.80 (s, 3H), 2.22-2.24 (m, 8H), 5.49
(s, 1H), 7.12 (s, 1H), 7.60-7.74 (m, 3H), 8.25-8.32 (m, 2H); IR (KBr,
cm~1) 3384, 2932, 1650, 1602, 1524, 1227, 858, 758, 694.
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